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Abstract

Linear stability of the incompressible flow along a streamwise corner is studied by solving
the two-dimensional eigenvalue problem governed by partial differential equations. It is found that
this fully three-dimensional flow is subject to inviscid instability due to the inflectional nature of the
streamwise velocity profile. The higher growth rates for the inviscid instability mode, which is sym-
metric about the corner bisector, as compared to the viscous Tollmien-Schlichting instability opera-
tive away from the corner is consistent with the experimental findings that the corner flow transitions

to turbulence earlier than the two-dimensional Blasius flow away from the corner.

1. This research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-19480 while the first author was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. Financial support for the se-
cond author was provided under NASA contract NAS1-19299. Work was completed during the Transition, Turbu-
lence and Combustion Workshop co-sponsored by ICASE and NASA LaRC on June 7 - July 2, 1993.
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1. INTRODUCTION

The last three decades saw significant progress towards better understanding of the stability
of flow over two-dimensional and swept wing flows. These advancements have greatly improved
our prediction and control capabilities of the laminar-turbulent transition process. For further prog-
ress it is important to enhance our understanding of the effects of geometric complications such as
wing-body junction, finite wing span, and surface roughness elements, which play an important role
in the overall transition process. Here we consider the inviscid stability of the flow along a stream-
wise corner, which can be considered as a model for the flow near a wing-body junction. The insta-
bility mechanisms induced by the streamwise corner will also help in assessing the effect of side
walls on transitional and turbulent wind tunnel experiments. Understanding of the instability will

also help us devise techniques for controlling transition in the corner flow.

The viscous flow along a corner that is formed by the intersection of two semi-infinite per-
pendicular plates (figure 1) is three dimensional close to the corner due to the strong interaction of
the boundary layers on the two perpendicular walls. The basic laminar flow permits a similarity solu-
tion under boundary layer assumption. The governing self-similar boundary layer equations ap-
propriate for the corner region, which blends with the two-dimensional Blasius boundary layer and
the outer potential flow away from the cornerline, was obtained by Rubin (1966). Numerical solu-
tions to these governing equations (Rubin & Grossman 1971 and Ghia 1975) exhibit a secondary
cross-stream flow which is directed towards the corner along the two walls and directed away from
the corner along the corner bisector. The resulting streamwise velocity profile along the corner bisec-
tor is inflectional in nature. Therefore the three-dimensional boundary layer near a streamwise cor-
ner is susceptible to inviscid instability, while the two-dimensional Blasius counterpart is only sub-

jected to milder viscous instability.

Experiments on corner layer by Nomura (1962), Barclay (1973), El-Gamal & Barclay
(1978) and Zamir & Young (1970, 1979) have yielded contrasting results for the laminar self-similar
velocity profile. The differences among these experimental results highlight the exceptional sensi-
tivity of the laminar corner layer solution to differences in the shape of the leading edge and stream-

wise pressure gradients (see Zamir 1981). This sensitivity to measurements can be attributed to the




early instability of the corner layer compared to the Blasius boundary layer. Based on his favourable
pressure gradient experiments, Zamir (1981) observes that the zero pressure gradient corner layer
becomes unstable at a Reynolds number of around 10%, while the critical Reynolds number fora zero

pressure gradient flat plate boundary layer is an order of magnitude higher, around 10°.

Lakin & Hussaini (1984) considered the stability of the corner flow sufficiently away from
the cornerline in the blending region, where the streamwise and wall normal velocities are given by
the Blasius solution with a superimposed secondary spanwise velocity induced by the corner. Solu-
tions to the stability equations were obtained with a critical layer analysis. Recently, Dhanak (1993)
studied the stability of the blending boundary layer numerically, employing the same governing
equations as those of Lakin & hussaini but emphasized the importance of enforcing appropriate sym-
metry boundary conditions along the corner bisector, instead of the usual asymptotic boundary
conditions at infinity for the one-dimensional problem. However, his results close to the corner re-
gion are quantitatively questionable since the one-dimensional stability analysis employed in his
analysis ignores any spanwise variation of the mean flow. Where as the actual flow is three dimen-
sional close to the corner and the approach towards the Blasius boundary layer is only algebraic (Pal
& Rubin 1971).

Here we will retain the strong dependence of the corner boundary layer along the two wall
normal directions and consider the stability of this flow with a locally parallel assumption along the
streamwise direction. The resulting two-dimensional stability analysis results in an eigenvalue prob-
lems which poses far greater computational challenges than the one-dimensional counterpart. To
simplify the analysis and computations, we will restrict attention to an inviscid analysis through an
extended Rayleigh equation (a partial differential equation). The inviscid analysis should be ade-
quate to capture the qualitative features of the dominant instability mechanism arising from the in-

flectional nature of the streamwise velocity component.
2. Mathematical Formulation

2.1 Mean Flow

The viscous flow along the corner that is formed by the intersection of two semi-infinite per-

pendicular flat plates (Figure 1) can be simplified with the boundary layer theory. Unlike flat plate




and infinite wing geometrnes, the corner flow is three-dimensional (all three velocity components
exist and they are function of all three coordinates). Sufficiently far way from both the flat plates
(region I) the flow can be modelled as potential flow. Close to the plates but far away from tne corner
line (regions I and IIT) the mean flow is nearly two-dimensional and depends only on x and y coordi-
nates in region II and on x and z coordinates in region IIl. These two-dimensional blending boundary
layers are primarily Blasius boundary layers, but with a superposed transverse flow. In the region
close to the corner line (region IV) the coupling that is created by the mutual interaction results in
a strongly three dimensional boundary layer. The flow in this corner region, termed as the *“‘corner

layer” is the subject matter of this paper.

The governing three-dimensional boundary layer equations appropriate within the corner

layer can be written in a self-.similar form as follows (Rubin 1966):
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where 7 and § are the nondimensional boundary layer coordinates along the wall normal directions
y and z given by
=_J 1/2 -_2Z 1/2
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*®
where the Reynolds number is defined as Re = UTX . The dependent variables %, v, w and p are

the nondimensional velocity components and pressure and are related to their dimensional values

u, v and w and p through the following relations:

» _V2Vo 12 2wo 1
V= URC ——U—'Re

A N 2
, w= , p= pRe. (3)

Here U is the free stream velocity, x" is the dimensional distance from the leading edge, o and v are

the density and kinematic viscosity of the fluid. The dependence on the streamwise direction, x, has




been eliminated in the above equation (1) by assuming a self similar solution for the comer layer

along the streamwise direction.

The elliptic nature of the governing equation (1) requires boundary conditions for &, v, w
on the four bounding lines; =0, £=0, 7 =nax—> ®© , & = &max — . The proper
boundary conditions on the two walls are no-slip and no-penetration. The asymptotic boundary
conditions appropriate in the limit of {ya — %, and 7 < &, should blend with the blending
boundary layer (region II). By symmetry the same boundary condition applies in the limit of
Emax = ®. These asymptotic boundary conditions can be expressed as the following expansion in

inverse powers of distance from the comerline (Pal & Rubin 1971)
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The zeroth order boundary conditions, iy, v, and py, are nothing but the Blasius boundary layer
solutions. The first order streamwise and wall normal velocities can be shown to be zero (Pal & Ru-
bin 1971) and the only first order effect of the corner is to induce the secondary flow, w,, towards
the comer along the bottom wall. The higher order terms in the above equation have been obtained
by Pal & Rubin (1971) by requiring a simultaneous matching of the corner layer with the outer po-
tential flow as 9, § — . Thus the above equation (4) provides asymptotically accurate higher or-
der boundary condition which can be applied at the outer boundaries of a computational domain that
has been truncated to a large but finite # = 9.x and § = {max. The above equation displays the

algebraic decay towards the Blasius boundary layeras & —» o,

The governing equation (1) can be solved with wall boundary conditions and asymptotic out-
er boundary conditions (equation 4) to obtain the laminar comer layer. This problem of obtaining

the corner mean flow has been addressed by many authors (Carrrier 1947, Pearson 1957, Rubin &




Grossman 1971, Desai & Mangler 1974 and Ghia 1975) with varying degrees of approximations
applied to the governing equations and the boundary conditions. Here we have employed a spectral
ADI technique in order to solve the corner layer equations; The spectral discretization will provide
exponential accuracy needed for accurate stability calculations. Results obtained from this tech-
nique compare favourably with those of Rubin & Grossman (1971) and Ghia (1975). Figure 2 shows
contours of streamwise velocity and a vector plot of the cross-stream secondary velocity. Figure 3
shows the velocity profiles plotted along the corner bisector. An inflection point in the streamwise

velocity profile at # = § = 2. 4 is evident.

3. Stability Analysis

The stability of the laminar base flow to small perturbatiens can be investigated through the
standard linear stability analysis. By making a quasi-parallel flow assumption for the base flow
along the streamwise direction, velocity and pressure perturbations of the following form (normal

mode anastaz) can be superimposed on to the mean flow

up = Up(,5) exp[s(@t — wi)) vp = Vp(1,8) exple(at — wn)]
A A 5
wp = wpy(.L)expluag — wr)] pp = b,(n.E)exp[u(@é — wr)] )

where £ is the non-dimensional streamwise coordinate and ,/5 x*Re Y2 and U are used as the
length and velocity scales. These perturbation quantities will be added to the nondimensionalized
base flow (i = f , Vm = VQRe) ™2 | W,, = W(2Re)~/2) and the total velocity and pressure
when substituted into the Navier-Stokes equation and the incompressibility condition and linearized

results in the following stability equations
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where operator L = — a? + 2= 6 7+ 253 6C2 and R = J/2Re. In the above temporal stability formula-




tion, the input parameters to the stability analysis, @ and Re, are respectively the streamwise wave-
number and Reynolds number and w is the resulting complex eigenvalue whose real part represents
the disturbance frequency and the imaginary part corresponds to the disturbance growth rate. Hence

if @Wimag_pan >0. comner flow is susceptible to unstable small amplitude disturbances.

3.1. Bisector Instability

Before solving the partial differential eigenvalue problem (equation 6), we will first consider
the effect of the inflectional profile by studying the simpler problem of the one-dimensional stability
of the velocity profile along the corner bisector. Instead of the cartesian coordinates # and § a new
orthogonal coordinate system s and # will be considered, where s is along the corner bisector. In the
transformed coordinates a locally parallel flow assumption is made by ignoring the variations in the
mean flow along the streamwise  and tangential 7 directions and stability of this one-dimensional
base flow to disturbances of the following form is considered
(11,(s5)
Vp(s)
Wp(s)
Pyl |

A
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The results obtained from this bisector stability analysis will be presented below to provide qualita-
tive understanding of the effect of the inflectional nature of the base flow on the overall stability.
Figure 4 shows temporal growth rate (imaginary part of @) of the disturbance plotted against stream-
wise wavenumber a at three different Reynolds numbers, Re=5000 (case I); Re=4.5 % 10* (case II)
and Re=1.25 % 10° (case III). Two-dimensional disturbances corresponding to =0 are the most am-
plified and results corresponding to this case only will be presented. The outer edge of the computa-
tional domain is chosen to be s,,4,=25 and is discretized by 85 Chebyshev Gauss—Lobatto points and
asymptotic boundary conditions are applied at the outer edge. The results presented are well con-
verged and show insensitivity to the exact number of grid points, location and nature of the outer
boundary condition. Also plotted in figure 4 is growthrate vs (Re)2 fora=0.21 (case IV). A critical
Reynolds number of Rej;=435.0is obtained and the corresponding critical streamwise wavelength,
a¢i=0.2 and the critical frequency, (Wcrit)real_pan=0.1. This result compared with the critical Re-

ynolds number of 9.1 10? for the Blasius profile shows that the inflection point induced by the




streamwise corner has the potential to decrease the critical Reynolds number by as much as two or-
ders of magnitude. Owing to its inviscid nature, the growth rates for the bisector profile are also
much larger than those of the Tollmien-Schlichting disturbance in the Blasius boundary layer. Figure
5 shows the frequency (@real_pan) variation corresponding to the four cases discussed above. As ex-
pected the frequency varies linearly with a for large values of the wavenumber and is almost inde-

pendent of the Reynolds number.

3. 2. The Two-Dimensional Inviscid Eigenvalue Problem

With the above encouraging results we will consider the two-dimensional inviscid instability
of the corner flow in the limit of Re — o . In this limit the viscous terms drops out of equation (6).
It should also be noted that in the limit of infinite Reynolds number the mean flow is purely stream-
wise, since in the boundary layer approximation the cross-stream velocities, V,, and w,,, are order

% smaller than the streamwise velocity. Equation (6) can therefore be simplified as:
e
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The above linear momentum and continuity equations can be combined to form the following single

higher order equation for the pressure perturbation (Hall & Horseman 1990):
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We will employ a spectral methodology (Canuto et al. 1988) for solving the above eigenva-
lue problem with Chebyshev discretization along the # and & directions. With this spatial discreti-

zation equation (8) reduces to a generalized matrix eigenvalue problem of the form

A

- A
Ap,=gBp, )

With N grid points along each of the #7 and § directions the size of the matrix eigenvalue problem




isnearly N2 X N2, therefore computational time and memory places stringent limitations on the spa-
tial resolution. Here we have employed the inviscid approximation since the discretized matrix for

the viscous eigenvalue problem (Eqn. 6) is sixteen fold larger. The following symmetry conditions

up®.8) = ip&.7) ipn.8) = — up@&.m
5m.8) = Wo@om) ) = — Wplam) (10
P,1.5) = p, &) P,n.5) = = p, &M

can be used to reduce the size of the matrix four fold, but the eigenvalue problem still remains formni-

dable.

In the inviscid limit the appropriate boundary condition to be applied on the solid boundaries
for the velocity eigenfunctions is no penetr .tion. From equations 7.2 and 7.3, the corresponding
pressure boundary conditions on the solid boundaries are zero normal derivatives. The computation-
al domain will be truncated to be a finite square and the outer boundary conditions will be imposed
at 7 = Nmax and & = Emax. The appropriate boundary condition for pressure at these outer bound-
aries is not clear. But far away from the corner (9 = #max, £ = max) the streamwise velocity profile

is not inflectional and will not support inviscid instability. Therefore, it is reasonable to assume that

ﬁp = 0 at # = Pmax and & = Enax. in any case, the eigenvalue problem was solved with both Di-
. A apAp apAp .. . e .

richlet ( p, = 0) and Neumann ) = —= = 0| boundary conditions and the sensitivity of the sia-

bility results to the placement of the outer boundary at = fpax and & = &max and to the number

of grid points was also considered. Based on these sensitivity tests /max = Emax = 25 with 55 Che-

byshev Gauss—Lobatto points along both the 7 and § directions was found adequate to provide well

converged results. Both Dirichlet and Neumann boundary conditions for pressure at the outer

boundaries yielded identical results to 5 decimal places.

Only results for the symmetric disturbance case will be presented below. The anti-symmetric
disturbances did not provide any growing solution. This result is to be ex pected since the symmetric

disturbances have their peak value along the corner bisector, where the base flow is inflectional.




Whereas, the pressure and streamwise velocity components of the antisymmetric disturbance mode
are zero along the corner bisector. Although, there are no growing anti-symmetric modes in the in-
visc.d limit, we anticipate growing anti-symmetric (Tollmien-Schlichting like) viscous modes in a
full viscous stability problem, but their growth -ate will siill be smaller than the corresponding sym-

metric inviscid mode.

In figure 6 the growth rate of the most unstable inviscid instability mode is plotted as a func-
tion of the streamwise wave number. The continuous curve corresponds to the case where homoge-
neous Dirichlet condition is used at the outer boundaries for the pressure eigenfunction and the sym-
bols correspond to the case of homogeneous Neumann pressure boundary condition. Insensitivity
of the results to the exact nature of the boundary condition is apparent, indicating that
Nmax = Emax = 25 is adequately away from the comer region. Also plotten in this figure is tue
growth rate of the second most unstable mode, whose maximum growth rate is nearly two and a half
times smaller than that of the most unstable mode. The corresponding frequency variations are
shown in figure 7 as a function of the streamwise wavenumber. A nearly linear increase in freqmency
with wavenumber can te observed. The frequency corresponding to the second most unstable mode

is slightly smaller than that of the most unstable mode.

The inviscid instability mode with the largest growth rate corresponds to a streamwise wave-
number of a=0.225. This result compares well with results obtained from the bisector instability
analysis, where a corresponding to the most amplified disturbance is 0.20 a: Re=5000 and 0.21 at
Re=4.5 X 10% and further increases with Reynolds number. The maximum growth rate (imaginary
part of w) obtained from the two-dimensional inviscid instability analysis 1s 0.004 and is much
smaller than those obtained from the one-dimensional bisector instability analysis. This is because
the mean flow in the two-dimensional analysis progressively becomes less inflectional av. ay from
the corner bisector and the overall effect is to reduce the growth rate in comparison with the one-di-
mensional analysis. The frequency (real part of w) obtained from these two instability analysis
agrees very well. For example, the non-dimensional frequency of the most amplified two-dimen-
sional inviscid mode is 0.1 which compares well with (@)real_pan=0-089 and 0.092 for the most am-

plified bisector modes at Re= 5000 and 4.5 X 104, respectively.




Figures 8a and 8b show the real and imaginary parts of the most amplified pressure eigen-
function(a = 0.225; w = 0. 108 + ¢ 0.003975). Peak values of the real part of the pressure ei-
genfunction occurs along the corner bisector near 7 = § = 2.5 where the mean streamwise velocity
profile is inflectionai. Although the peak values of the imaginary part occur away from the corner
bisector closer to the walls, the magnitude of the real part dominates the imaginary part. From the
pressure eigenfunctions the corresponding velocity eigenfunctions can be evaluated based on equa-
tion (7). Figures 9a and 9b show contours of the v-eigenfunction plotted in two different ranges. It
is clear from this figure that the v—velocity of the disturbance rapidly increases near the critical layer
where the denominator t(au,, — @) that occurs in the evaluation of the velocity eigenfunctions be-
come nearly singular. But the pressure eigenfunction is well behaved in this critical layer region and
therefore the eigenvalue computations are well resolved. The corresponding w-eigenfunctions can
be obtained from figure 9 based on the even parity of the w and v eigenfunctions about the corner

bisector.

4, Conclusions

Finally we conclude with a few comments on how the above results are relevantin explaining
the rapid transition observed in zero pressure gradient corner flow experiments. The two-dimension-
al inviscid instability analysis, although confirms the possibility of an inviscid instability due to the
inflectional nature of the mean streamwise velocity does not provide any clue as to the critical Re-
ynolds number for this mechanism to be active. On the other hand, the bisector instability analysis,
although itignores all variations in the mean flow away from the bisector, yields a critical Reynolds
rumber of 435. In any case, these results suggest a possible destabilizing inviscid mechanism active
starting from a point close to the leading edge as compared to the corresponding viscous instability
in the Blasius boundary layer. These results are consistent with the experimental observations of Za-
mir (1981) that the corner flow becomes transitional at Reynolds numbers /&~ 104 compared with the
critical Reynolds number of & 9 X 10 for the Blasius boundary layer. Further confirmation of the
presentresults with a ful! two-dimensional viscous stability analysis (using equation (6)) is currently

being pursued.
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Figure Captions

Figure 1: Streamwise comer flow geometry and the coordinate system used.

Figure 2: Contour plot of the streamwise component of the mean velocity field. There are 19 contour
lines running from 0.05 near the walls to 0.95 away from the walls. Also shown is a vector plot of

the cross-stream velocity components.

Figure 3: Velocity components along the streamwise direction and along the corner bisector plotted
against distance from the cornerline along the corner bisector (s). Due to boundary layer scaling the
actual velocity component along the comer bisector is order (Re)!/2 smaller than the streamwise

component.

Figure 4: Growth rate obtained from the bisector instability analysis. Case I: growth rate vs a for
Re=5000; case II: growth rate vs a for Re=4.5 X 10%; case III: growth rate vs a for Re=1.25 X 10,
case IV: growth rate vs Re for a=0.21.

Figure 5: Frequency obtained from the bisector instability analysis. Case I: Frequency vs a for
Re=5000; case II: Frequency vsa for Re=4.5 X 10%; case I1I: Frequency vs @ for Re=1.25 X 10°; case
IV: Frequency vs Re for a=0.21.

Figure 6: Growth rate vs a obtained from the inviscid instability analysis for the first two most unstable
disturbance modes. Slid line corresponds to the most unstable mode and the dashed line corresponds

to the second most unstable mode.

Figure 7: Frequency vs a obtained from the inviscid instability analysis for the first two most unstable
disturbance modes. Slid line corresponds to the most unstable mode and the dashed line corresponds

to the second most unstable mode.

Figure 8: Contours of the real (a) and the imaginary (b) parts of the pressure eigenfunction correspond-
ing to the most amplified inviscid disturbance. For the real part there are 21 contour lines ranging
from—1.0 (marked 1) to 0.0 (marked L) and for the imaginary part there are 21 contours ranging from
—0.2 (marked 1) to 0.1 (marked L).

Figure 9: Contours of the absolute value of the v-velocity eigenfunction corresponding to the most am-
plified inviscid disturbance. For clarity the contours are plotted in two different ranges. In figure 9a
there are 19 contours ranging from 1.0 (marked 1) to 19.0 (marked J) and in figure 9b there are 20

contours ranging from 0.1 (marked 1) to 2.0 (marked K).
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Figure 1: Corner Flow geometry
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